Targeting tumor microvessels using doxorubicin encapsulated in a novel thermosensitive liposome.

نویسندگان

  • Qing Chen
  • Sheng Tong
  • Mark W Dewhirst
  • Fan Yuan
چکیده

Liposomal drugs accumulate only in perivascular regions in tumors after i.v. injection. Thus, they cannot kill tumor cells in deeper tissue layers. To circumvent this problem, we investigated effects of doxorubicin (DOX) encapsulated in a lysolecithin-containing thermosensitive liposome (LTSL) on tumor microcirculation because damaging microvessels would stop nutrient supply to deeper tumor cells. We used LTSL-DOX in combination with hyperthermia to treat a human squamous carcinoma xenograft (FaDu) implanted in dorsal skinfold chambers in nude mice. Before the treatment, the RBC velocity in tumors was 0.428 +/- 0.037 mm/s and the microvascular density was 3.93 +/- 0.44 mm/mm(2). At 24 hours after the treatment, they were reduced to 0.003 +/- 0.003 mm/s and 0.86 +/- 0.27 mm/mm(2), respectively. The same treatment, however, caused only 32% decrease in the RBC velocity and no apparent change in microvascular networks in normal s.c. tissues over the same period. LTSL and LTSL-DOX alone had no effect on tumor microcirculation, and LTSL plus hyperthermia caused only a transient decrease in the RBC velocity in tumors. At 24 hours after treatments, tumor microcirculation in all these control experiments was insignificantly different from that before the treatments. We also examined apoptosis of cells in tumors at different time points after LTSL-DOX plus hyperthermia treatment and observed few apoptotic cells in tumor microvessels. In conclusion, the rapid release of DOX during hyperthermia could make the drug to shutdown tumor blood flow while have only minor effects on normal microcirculation in s.c. tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo

Clotted plasma proteins are present on the walls of tumor vessels and in tumor stroma. Tumor-homing peptide Cys-Arg-Glu-Lys-Ala (CREKA) could recognize the clotted plasma proteins in tumor vessels. Thermosensitive liposomes could immediately release the encapsulated drug in the vasculature of the heated tumor. In this study, we designed a novel form of targeted thermosensitive liposomes, CREKA-...

متن کامل

Photoacoustic signal characterization of cancer treatment response: Correlation with changes in tumor oxygenation

Frequency analysis of the photoacoustic radiofrequency signals and oxygen saturation estimates were used to monitor the in-vivo response of a novel, thermosensitive liposome treatment. The liposome encapsulated doxorubicin (HaT-DOX) releasing it rapidly (<20 s) when the tumor was exposed to mild hyperthermia (43 °C). Photoacoustic imaging (VevoLAZR, 750/850 nm, 40 MHz) of EMT-6 breast cancer tu...

متن کامل

Tumor-targeting nanodelivery enhances the anticancer activity of a novel quinazolinone analogue.

GMC-5-193 (GMC) is a novel anticancer small-molecule quinazolinone analogue with properties that include antimicrotubule activity and inherent fluorescence. The aim of this study was to produce and optimize a systemically administered liposomal formulation for tumor-targeting delivery of GMC to enhance the anticancer effect of this compound and evaluate its bioefficacy. GMC was encapsulated wit...

متن کامل

A generic 89Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography

Liposomal nanoparticles are versatile drug delivery vehicles that show great promise in cancer therapy. In an effort to quantitatively measure their in vivo pharmacokinetics, we developed a highly efficient 89Zr liposome-labeling method based on a rapid ligand exchange reaction between the membrane-permeable 89Zr(8-hydroxyquinolinate)4 complex and the hydrophilic liposomal cavity-encapsulated d...

متن کامل

A Mathematical Model for Thermosensitive Liposomal Delivery of Doxorubicin to Solid Tumour

The effectiveness of anticancer treatments is often hampered by the serious side effects owing to toxicity of anticancer drugs and their undesirable uptake by healthy cells in vivo. Thermosensitive liposome-mediated drug delivery has been developed as part of research efforts aimed at improving therapeutic efficacy while reducing the associated side effect. Since multiple steps are involved in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 3 10  شماره 

صفحات  -

تاریخ انتشار 2004